[TechTarget] 10 AI tech trends data scientists should know
By Zilliant
Jun 08, 2021
Read Lee Rehwinkel’s opinion on why “ML Ops” is the last mile of machine learning in this Tech Target article.
AI adoption is accelerating across industries, driven by a combination of concrete results, high expectations and a lot of money. Among the many new AI concepts and techniques launching almost daily, 10 AI tech trends in particular grab data scientists’ attention.
1. MLOps
Machine learning operations (MLOps) isn’t a new concept, but it’s a relatively new “Ops” practice which operationalizes machine learning models. MLOps seeks to understand what works and doesn’t work in a model in order to create more reliable models in the future.
It’s the last mile of machine learning model building, and a practice that historically hasn’t been given much attention, said Lee Rehwinkel, VP of science at B2B pricing and sales software company Zilliant.
“It’s one of the reasons a lot of models never see the light of day, but it’s super important [because] you build a model but how do you know the uptime of that model? How fast is it going to make predictions? Does it need to be trained or retrained?” he said.